

Journal of Hazardous Materials

Journal of Hazardous Materials B138 (2006) 419-420

www.elsevier.com/locate/jhazmat

Erratum

Erratum to "Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study" [J. Hazard. Mater. B 136 (2006) 632–644]

Hrvoje Kušić, Natalija Koprivanac*, Ana Lončaric Božić, Iva Selanec

University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, HR-10000 Zagreb, Croatia Available online 9 October 2006

The publisher regrets that errors where introduced during the typesetting of Tables 1 and 2 of the above-mentioned article. The corrected tables are reproduced here.

Table 1

The reactions, rate constants and quantum yields used for the kinetic modeling

#	Reaction	Reference	$k (M^{-1} s^{-1})$	
			Literature	Used
1	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{\bullet}$	[15,16,19-23]	63–76	76
2	$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + H^+ + HO_2^{\bullet}$	[15,16,19–23]	0.01-0.02	0.02
3	$Fe^{2+} + OH^{\bullet} \rightarrow Fe^{3+} + OH^{-}$	[15,16,19–22]	$(3.0-4.3) \times 10^8$	3.2×10^{8}
4	$\mathrm{Fe}^{3+} + \mathrm{HO}_2^{\bullet} \rightarrow \mathrm{Fe}^{2+} + \mathrm{O}_2 + \mathrm{H}^+$	[15,16,20–22]	$(0.1-3.1) \times 10^5$	3.1×10^{5}
5	$\mathrm{Fe}^{2+} + \mathrm{HO}_2^{\bullet} \rightarrow \mathrm{Fe}^{3+} + \mathrm{HO}_2^{-}$	[15,16,20–22]	1.2×10^{6}	1.2×10^{6}
6	$\mathrm{Fe}^{3+} + \mathrm{O_2}^{\bullet-} \rightarrow \mathrm{Fe}^{2+} + \mathrm{O_2}$	[15,16,19–22]	$(0.5-1.5) \times 10^8$	5.0×10^{7}
7	$Fe^{2+} + O_2^{\bullet-} \rightarrow Fe^{3+} + H_2O_2$	[15,16,19–22]	1.0×10^{7}	1.0×10^{7}
8	$OH^{\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + H_2O$	[15,16,19–22]	$(1.2-4.5) \times 10^7$	4.5×10^{7}
9	$2OH^{\bullet} \rightarrow H_2O_2$	[16,19–22]	$(4.2-5.3) \times 10^9$	5.3×10^{9}
10	$HO_2^{\bullet} + OH^{\bullet} \rightarrow H_2O + O_2$	[16,19–23]	6.6×10^{11}	6.6×10^{11}
11	$2HO_2^{\bullet} \rightarrow H_2O_2 + O_2$	[15,16,19–22]	8.3×10^{5}	8.3×10^{5}
12	$O_2^{\bullet-} + HO_2^{\bullet} \rightarrow HO_2^- + O_2$	[15,16,19–22]	9.7×10^{7}	9.7×10^{7}
13	$O_2^{\bullet-} + HO^{\bullet} \rightarrow HO^- + O_2$	[16,20–22]	1.0×10^{10}	1×10^{10}
14	$HO_2^{\bullet} \rightarrow O_2^{\bullet-} + 2H^+$	[15,16,19–22]	$(1.58-7.9) \times 10^5 \mathrm{s}^{-1}$	$1.58 \times 10^5 \text{ s}^{-1}$
15	$O_2^{\bullet-} + 2H^+ \rightarrow HO_2^{\bullet}$	[15,16,20–22]	1.0×10^{10}	1.0×10^{10}
16	$OH^{\bullet} + H_2O_2 \rightarrow O_2^{\bullet-} + H_2O$	[16,21,22]	2.7×10^{7}	2.7×10^{7}
17	$Fe^0 + H_2O_2 \rightarrow Fe^{2+}$ -surface			3.83×10^{-2}
18	Fe^{2+} -surface + $H_2O_2 \rightarrow Fe^{3+} + OH^{\bullet}$			6×10^{-2}
19	$Fe^0 + H_2O_2 \rightarrow Fe^{2+} + OH^-$	[23]	0.44-0.23 (pH dep)	1×10^{-2}
20	$H_2O_2 + h\nu \rightarrow 2OH^{\bullet}$	[15,24,25]		$4.13 \times 10^{-5} \mathrm{s}^{-1}$
21	$OH^{\bullet} + HO_2^- \rightarrow HO_2^{\bullet} + OH^-$	[21,22,24]	7.5×10^{9}	$7.5 imes 10^{-9}$
22	$HO_2^{\bullet} + H_2O_2 \rightarrow H_2O + HO^{\bullet} + O_2$	[24]	3.0	3.0
23	$O_2^{\bullet-} + H_2O_2 \rightarrow OH^- + HO^{\bullet} + O_2$	[24]	0.13	0.13
24	$\mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{O} + h\nu \rightarrow \mathrm{Fe}^{2+} + \mathrm{OH}^{\bullet} + \mathrm{H}^+$	[11–13,15,26]		$3.33 imes 10^{-6}$
25	$PH + OH^{\bullet} \rightarrow DIHCHD^{\bullet}$	[15,21,22]	$o: 7.3 \times 10^9$	7.3×10^{9}
26	$\rm DHCD^{\bullet} + \rm H^{+} \rightarrow \rm PH^{\bullet} + \rm H_{2}O$	[15,21,22]	5×10^8	$5 imes 10^8$

DOI of original article:10.1016/j.jhazmat.2005.12.046.

E-mail address: nkopri@marie.fkit.hr (N. Koprivanac).

^{*} Corresponding author. Tel.: +385 1 4597 124; fax: +385 1 4597 143.

^{0304-3894/\$ –} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2006.08.042

Table 1	(Continued)	
---------	-------------	--

#	Reaction	Reference	$k (M^{-1} s^{-1})$	
			Literature	Used
27	$DHCD^{\bullet} + O_2 \rightarrow CC + HO_2^{\bullet}$	[15,21,22]	$1.5 imes 10^{9}$	1.5×10^{9}
28	$DHCD^{\bullet} + O_2 \rightarrow HQ + HO_2^{\bullet}$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
29	$DHCD^{\bullet} + O_2 \rightarrow BQ + HO_2^{\bullet}$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
30	$DHCD^{\bullet} + BQ \rightarrow PH^{\bullet} + CC + HQ$	[15,21,22]	3.7×10^{9}	3.7×10^{9}
31	$2\text{DHCD}^{\bullet} \rightarrow \text{PH} + \text{CC} + \text{HC}$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
32	$2DHCD^{\bullet} \rightarrow products$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
33	$DHCD^{\bullet} + PH^{\bullet} \rightarrow products$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
34	$DHCD^{\bullet} + PH^{\bullet} \rightarrow PH + CC + HQ$	[15,21,22]	5.0×10^{8}	5.0×10^{8}
35	$PH^{\bullet} + PH^{\bullet} \rightarrow products$	[15,21,22]	1.0×10^{9}	1.0×10^{9}
36	$BQ + O_2^{\bullet -} \rightarrow HPH^{\bullet} + O_2$	[15,21,22]	1.0×10^{9}	1.0×10^{9}
37	$CC + OH^{\bullet} \rightarrow products$	[21,22]	1.1×10^{10}	1.1×10^{10}
38	$HQ + OH^{\bullet} \rightarrow products$	[21,22]	5.0×10^{9}	5.0×10^{9}
39	$BQ + OH^{\bullet} \rightarrow products$	[21,22]	1.2×10^{9}	1.2×10^{9}
40	$PH^{\bullet} + Fe^{2+} \rightarrow PH + Fe^{3+}$	[15,21,22]	1.0×10^{5}	1.0×10^{5}
41	$PH + Fe^{3+} \rightarrow HPH^{\bullet} + Fe^{2+}$	[15,21,22]	4.4×10^{2}	4.4×10^{2}
42	$HPH^{\bullet} + Fe^{2+} \rightarrow PH + Fe^{3+}$	[15,21,22]	1.1×10^{3}	1.1×10^{3}
43	$HPH^{\bullet} + Fe^{3+} \rightarrow BQ + Fe^{2+}$	[15,21,22]	4.4×10^{4}	4.4×10^{4}
44	$BQ + Fe^{2+} \rightarrow HPH^{\bullet} + Fe^{3+}$	[15,21,22]	1.2×10^{-3}	1.2×10^{-3}
45	$PH + h\nu \Leftrightarrow PH^* \to CC$			$\Phi = 2.5 \text{ mmol Einstein}^{-1}$
46	$PH + hv \Leftrightarrow PH^* \rightarrow products$	[25-27]	$\Phi = 11 - 18 \text{ mmol Ein}^{-1}$	$\Phi = 17 \text{ mmol Einstein}^{-1}$
47	$(1 - \alpha)OC + OH^{\bullet} \rightarrow IP$			2.33×10^{8}
48	$Fe^{3+} + \alpha \text{ OC} \rightarrow Fe^{3+} \text{-complexes}$	[16]	1.0	1.0
49	Fe^{3+} -complexes + $h\nu \rightarrow Fe^{3+} + \alpha OC$			$1 \times 10^{-3} \mathrm{s}^{-1}$
50	$OC + h\nu \Leftrightarrow OC^* \to IP$			$\Phi = 17 \text{ mmol Einstein}^{-1}$

PH: phenol, DHCD[•]: dihydroxycyclohexacienyl radical, PH[•]: phenyl radical, HPH[•]: hydroxyphenyl radical, CC: catechol, HQ: hydroquinone, BQ: benzoquinone, OC: organic content, IP: inorganic products, and α : fraction of organic content that takes part in Fe scavenging.

* Excited state.

Table 2 The list of developed AOP models concerning source of experimental data and used reactions

Model #	AOP	Exp. data source	Reaction # (Table 1)
1	Fe ²⁺ /H ₂ O ₂ & Fe ³⁺ /H ₂ O ₂	HPLC	1–16, 25–44
2	Fe ²⁺ /H ₂ O ₂ & Fe ³⁺ /H ₂ O ₂	TOC	1–16, 47, 48
3	Fe^0/H_2O_2	HPLC	1-19, 25-44
4	Fe^0/H_2O_2	TOC	1–19, 47, 48
5	UV	HPLC	45, 46
6	UV	TOC	50
7	UV/Fe ³⁺	HPLC	1-16, 24-46
8	UV/Fe ³⁺	TOC	1-16, 24, 47-50
9	UV/H ₂ O ₂	HPLC	8-16, 20-23, 25-46
10	UV/H ₂ O ₂	TOC	8-16, 20-23, 47, 50
11	UV/Fe ²⁺ /H ₂ O ₂ & UV/Fe ³⁺ /H ₂ O ₂	HPLC	1-16, 20-46
12	UV/Fe ²⁺ /H ₂ O ₂ & UV/Fe ³⁺ /H ₂ O ₂	TOC	1-16, 20-24, 47-50
13	UV/Fe ⁰ /H ₂ O ₂	HPLC	1–46
14	UV/Fe ⁰ /H ₂ O ₂	TOC	1–24, 47–50